dataset

7131 autosomal protein-coding denovo mutations in case, including missense(MPC>=0), PTV(pLI >= 0) and synonymous.

  • mis(MPC >= 1) + PTV = 2220
  • Missense_Lowest(MPC<1) = 3155
  • syn = 1756
1
2
3
4
5
6
7
8
9
10
11
12
f3 = data.frame(RR = 36.14)

f3$logRR = -1
f3$lower_bound = -2.197207
f3$upper_bound = 0.1972072
f3$annota = "unaffected_scale_syn"
f3$exp = 1562
f3$obs = 1756
f3$oe_ratio = f3$obs/f3$exp
f3$logRR_paper = 0.119018
f3$RR_paper = 1.13
f3
A data.frame: 1 × 10
RRlogRRlower_boundupper_boundannotaexpobsoe_ratiologRR_paperRR_paper
<dbl><dbl><dbl><dbl><chr><dbl><dbl><dbl><dbl><dbl>
36.143.587452.4302914.74461lof_pLI>=0.99523661833.92316950.56
1
2
f6=rbind(f5,s)
f6
A data.frame: 4 × 12
RRlogRRlower_boundupper_boundannotaexpobsoe_ratiologRR_paperRR_papern_DNMn_proband
<dbl><dbl><dbl><dbl><chr><dbl><dbl><dbl><dbl><dbl><dbl><dbl>
0.3678795-1.000000-1.859598-0.1404014annovar_synonymous16801756 1.0452380.119018 1.1371316430
8.0000000 2.079227 1.826094 2.3323600missense_MPC>=2 220 354 1.6090913.09783722.1571316430
36.1400000 3.587450 2.430291 4.7446100lof_pLI>=0.995 2 366183.0000003.92316950.5671316430
0.3678794-1.000000-1.595831-0.4041690annovar_synonymous 503 0 0.0000000.119018 1.1322206430

dataset incorporated to derive 102 genes.

  • 2220 denovo PTV and missense (MPC >=1)
  • 29,783 case-control rare PTV

1) TADA & ASC2015, de novo variants only. 31 genes

2) TADA & ASC2018, de novo variants only. 65 genes

3) TADA$^+$ & ASC2018, de novo variants only. 89 genes

4) TADA$^+$ & ASC2018, de novo and case-control variants. 102 genes

using synonymous mutations count to normalize the count of a certain type of mutation.

$\lambda$ = $(X_{cs}/ X_{cn}) / (S_{cs}/ S_{cn})$

$\gamma$ = 1 + ($\lambda$ - 1)/$\pi$

1
2
3
4
5
6
7
8
s = (1755/6430/(591/2179)) ### burden of synonymous
s
pi = 0.05

gm = 1+(s-1)/pi
gm

log(gm)

1.00631952064798

1.12639041295956

0.119018195163435

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
annota = c("gnomad.v2.1.1.all_lofs_snv (PTV average)",
"MPC_gt2 (MisB)",
"lofs_pLI_nlt_0.995",
"lofs_pLI_0.5_0.995",
"MPC_1-2 (MisA)",
"synonymous")
logRR_paper = c(
1.949428,
3.097837,
3.923169,
1.922309,
1.430310,
0.119018)
rr = data.frame(annota,logRR_paper)
rr$RR_paper = round(exp(rr$logRR_paper),2)
rr
A data.frame: 6 × 3
annotalogRR_paperRR_paper
<fct><dbl><dbl>
gnomad.v2.1.1.all_lofs_snv (PTV average)1.949428 7.02
MPC_gt2 (MisB) 3.09783722.15
lofs_pLI_nlt_0.995 3.92316950.56
lofs_pLI_0.5_0.995 1.922309 6.84
MPC_1-2 (MisA) 1.430310 4.18
synonymous 0.119018 1.13
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
logRR = c(-1.000000,
4.156999,
5.083290,
3.405306,
2.967571,
-1.000000)

lower_bound = c(-16.798553,
3.788179,
4.190904,
3.224070,
2.836006,
-1.483602)

upper_bound = c(14.7985529,
4.5258196,
5.9756750,
3.5865425,
3.0991369,
-0.5163975)

df2220 = data.frame(logRR,lower_bound,upper_bound)
df2220$RR = exp(df2220$logRR)
df2220$annota = c("pLI_05_995",
"pLI_lt05",
"pLI_nlt_995",
"_MPC_gt2",
"MPC_1-2",
"MPC_0-1")
df2220.2 = df2220[,c(4,1,2,3,5)]
df2220.2
A data.frame: 6 × 5
RRlogRRlower_boundupper_boundannota
<dbl><dbl><dbl><dbl><chr>
0.3678794-1.000000-16.79855314.7985529pLI_05_995
63.8795322 4.156999 3.788179 4.5258196pLI_lt05
161.3038736 5.083290 4.190904 5.9756750pLI_nlt_995
30.1235121 3.405306 3.224070 3.5865425_MPC_gt2
19.4446312 2.967571 2.836006 3.0991369MPC_1-2
0.3678794-1.000000 -1.483602-0.5163975MPC_0-1

dataset used in previous tests

  • 15,789 de novo variants from 6,430 probands and 2,179 unaffected children.